Noncommutative geometry and reality

نویسنده

  • Alain Connes
چکیده

We introduce the notion of real structure in our spectral geometry. This notion is motivated by Atiyah’s KR-theory and by Tomita’s involution J. It allows us to remove two unpleasant features of the “Connes-Lott” description of the standard model, namely, the use of bivector potentials and the asymmetry in the Poincare duality and in the unimodularity condition.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Algebraic Noncommutative Geometry

A noncommutative algebra A, called an algebraic noncommutative geometry, is defined, with a parameter ε in the centre. When ε is set to zero, the commutative algebra A0 of algebraic functions on an algebraic manifold M is obtained. This A0 is a subalgebra of Cω(M), which is dense if M is compact. The generators of A define an immersion of M into Rn, and M inherits a Poisson structure as the lim...

متن کامل

Stability of additive functional equation on discrete quantum semigroups

We construct  a noncommutative analog of additive functional equations on discrete quantum semigroups and show that this noncommutative functional equation has Hyers-Ulam stability on amenable discrete quantum semigroups. The discrete quantum semigroups that we consider in this paper are in the sense of van Daele, and the amenability is in the sense of Bèdos-Murphy-Tuset. Our main result genera...

متن کامل

Quantum Groups and Noncommutative Geometry

Quantum groups emerged in the latter quarter of the 20th century as, on the one hand, a deep and natural generalisation of symmetry groups for certain integrable systems, and on the other as part of a generalisation of geometry itself powerful enough to make sense in the quantum domain. Just as the last century saw the birth of classical geometry, so the present century sees at its end the birt...

متن کامل

ar X iv : h ep - t h / 00 12 14 5 v 3 2 9 Ju l 2 00 1 Introduction to M ( atrix ) theory and noncommutative geometry

Noncommutative geometry is based on an idea that an associative algebra can be regarded as " an algebra of functions on a noncommutative space ". The major contribution to noncommutative geometry was made by A. Connes, who, in particular, analyzed Yang-Mills theories on noncommutative spaces, using important notions that were introduced in his papers (connection, Chern character, etc). It was f...

متن کامل

Ja n 20 01 Introduction to M ( atrix ) theory and noncommutative geometry

Noncommutative geometry is based on an idea that an associative algebra can be regarded as " an algebra of functions on a noncommutative space ". The major contribution to noncommutative geometry was made by A. Connes, who, in particular, analyzed Yang-Mills theories on noncommutative spaces, using important notions that were introduced in his papers (connection, Chern character, etc). It was f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999